
A Measurement Study of Piece Population in
BitTorrent

Cameron Dale
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Email: camerond@cs.sfu.ca

Jiangchuan Liu
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada
Email: jcliu@cs.sfu.ca

Abstract—BitTorrent is the most popular peer-to-peer software
for file sharing, which has contributed to a significant portion
of today’s Internet traffic. Many measurement studies have been
devoted to the BitTorrent system at the peer-level; yet few have
examined the microscopic piece-level, in particular, the piece
populations. This information is very useful in understanding
the dynamics and evolution of BitTorrent swarms, and especially
the effectiveness of its rarest-first policy that strives to ensure an
even distribution of pieces.

In this paper, we present a systematic measurement study
on the distribution and evolution of the piece population in
BitTorrent. Our measurement is based on real BitTorrent data
gathered from both the Internet and controlled PlanetLab
swarms. The data is collected by multiple administrated clients
distributed in different parts of the network, which collectively
offer a global view of the piece distribution. We analyze both
snapshot data of the near-instantaneous population of pieces in
BitTorrent swarms, and long-term data of the evolution of the
piece population over several days, especially during the early
phases of the swarm’s lifetime. Our results validate that the
downloading policy of BitTorrent is quite effective from a piece
distribution and evolution perspective; yet enhancements are still
possible to achieve the ideal piece distribution.

I. INTRODUCTION

Among all the peer-to-peer Internet applications available,
BitTorrent [1] has become the most popular for file sharing.
Recent reports have indicated that half of all the current
Internet traffic is due to BitTorrent [2]. One of the reasons
it has become so popular is that the sharing is very efficient
[3], allowing downloads to scale well with the size of the
downloading population. This efficiency is obtained by break-
ing up each large file into hundreds or thousands of segments,
or pieces, which, once downloaded by a peer, can be shared
with others while the downloading continues.

An important consideration in controlling this sharing is
deciding the order of pieces to download. Each peer will have
to make this decision based only on the local knowledge it has
of the system. An inadequate policy could lead to some pieces
becoming poorly replicated, and therefore almost unavailable,
while others are overly replicated, leading to starvation in areas
of the system where new pieces are needed. To understand
how the policy for choosing pieces in BitTorrent affects the
system, it is necessary to examine the system-wide population
of pieces available. This microscopic information would help
to understand the dynamics and evolution of the BitTorrent

swarm, and especially the effectiveness of the policy used by
BitTorrent to ensure an even distribution of pieces.

Though there have been many recent research projects
investigating specifically the sharing present in BitTorrent,
most have focused on the macroscopic measurements of peers
in the system. Izal et al. [4] gathered and analyzed long-
term data from a BitTorrent tracker, but since the tracker
has no knowledge of pieces, they did not further explore this
information. Pouwelse et al. [5] studied BitTorrent through
tracker logs and also a large number of administered clients.
However, they were interested mainly in measurements of the
uptimes and download rates of the contacted peers. Veciana et
al. [6] created a Markov Chain model to numerically study the
service capacity of a BitTorrent-like P2P system. This model
was expanded on by Qiu and Srikant [3] to create a simple
deterministic fluid model for the peer population of the system.
Using the model, they also examined the effectiveness of the
file sharing in BitTorrent by a peer-level probabilistic model
that assumes peers have global knowledge.

In this paper, we present a systematic measurement study
on the distribution and evolution of the piece population in
BitTorrent. Our measurement is based on real BitTorrent data
gathered from both regular Internet and controlled PlanetLab
swarms. The data is collected by multiple administrated clients
distributed in different parts of the network, which collectively
offer a global view of the piece distribution. To the best of our
knowledge, the closest work to ours is from Legout et al. [7],
who administrated a single client and connected separately to
26 torrent swarms of differing characteristics. Their results
thus reflect the piece availability only in peers the single
client connected to during the experiment, which may not be
representative of the entire swarm, nor does it offer the global
knowledge of the piece population.

We examine snapshots of the population of pieces in
swarms, and the evolution of the piece population over several
days, mostly during the early phases of a swarm’s lifetime. We
find that the piece distributions are generally very narrow, and
progress to a more ideal distribution quite quickly. This shows
that the downloading policy of BitTorrent is effective from a
piece distribution and evolution perspective, though we do find
that some enhancements are possible to achieve an ideal piece
distribution, especially for larger torrent swarms.



II. BITTORRENT OVERVIEW

A BitTorrent swarm is the set of all peers currently down-
loading pieces from each other. It is made up of two types
of peers, those who have the complete file (uploaders or
seeders), and those who are still downloading it (downloaders
or leechers). The BitTorrent system coordinates file sharing
through the use of a centralized tracker. Upon receiving a
request from a downloading peer’s client, the tracker will
provide a random list of peers for the client to contact. The
client will then contact each of the peers to gather information
about which pieces the peers have available for download.

Throughout the lifetime of a BitTorrent swarm, three phases
or states are evident. The first is a startup state occurring
at the very beginning of the swarm, at which time only
the initial seed has all the pieces of the file. Once a single
copy of all pieces is uploaded to the swarm, the startup
state ends, and a transient state begins. The transient state
is usually characterized by the rapid influx of downloaders
to the swarm, which leads to a system with proportionally
many more leechers than seeders. Once this influx slows, the
swarm will move towards a steady state, characterized by an
unchanging number of seeders and leechers, so that the arrival
rate of leechers must be the same as (or near to) the rate of
change of leechers to seeders and the departure rate of seeds
from the system. The amount of time spent in the startup state
is determined solely by the upload rate of the initial seed and
the size of the file, while the time spent in the transient state
is determined by the popularity of the torrent.

A. The Rarest-First Policy

There are many policies at work in a BitTorrent client that
govern how it downloads pieces. One of the most important
is the rarest-first policy, which is responsible for choosing
pieces to download with the goal of ensuring that pieces
are uniformly distributed throughout the system. The client
constantly updates a list of the pieces each of its connected
peers has available. Using this information, the client can
determine which piece (or set of pieces) it believes to be the
rarest in the swarm. These rarest pieces will be selected first
to download from the connected peers. Due to the limitations
of the local knowledge each peer has, the pieces chosen to
download may not be the rarest in the entire swarm.

B. Piece Population in BitTorrent

The piece population is the number of copies of each piece
in the BitTorrent swarm. Each piece can have a number of
copies varying from the number of seeds in the system to the
total number of peers in the system (seeders and leechers).
Since all seeds always have all pieces, we will restrict our
discussion to the population of pieces among the downloaders
in the system. Therefore, each piece in this limited view of
the swarm can have a number of copies varying from 0 to the
number of downloaders in the system.

The population is expected to form some distribution around
a mean value. This mean depends solely on the average
completion of the download, which is itself determined by the

arrival rate of downloaders and the transition rate of leechers
into seeders. During the startup phase, this mean will be
low as not all pieces are available yet in the swarm. In the
transient state, the mean will be less than half the number
of downloaders, as new downloaders are arriving faster than
pieces can be copied in the system. In the steady state the
mean should be close to half the downloaders, as the average
completion will be 50%, as new downloaders arrive to the
system at the same rate as downloaders become seeders. Only
at the end of the torrent’s life will the mean be larger than
half the number of downloaders in the system.

Though the policy for choosing pieces to download will not
affect the mean of the population distribution, it will have a
large effect on the width of the distribution about the mean.
Ideally, this distribution width would be very small, signifying
that copies are equally distributed to all pieces in the system.
It is not hard to imagine far from optimal scenarios where
this distribution could range from 0 all the way to the number
of downloaders, especially considering the limited knowledge
peers have of the system when it is very large. The most
problems will be expected in large swarms as some peers will
have chosen pieces to download that are not rare in the system,
but are only rare for the local view the peer has of the system,
creating a tail in the distribution towards a higher number of
downloaders.

The distribution width will also vary at different stages of
the system, through no fault of the policy itself. For example,
early on in the startup phase it is very difficult to keep a small
distribution about the mean, when most of the pieces have not
yet been copied in the system. Ideally, once this phase of the
swarm is complete, the distribution width should narrow very
quickly as pieces are preferentially copied that were previously
under-represented.

III. EXPERIMENTAL SETUP FOR MEASUREMENTS

We gathered all experimental data using a modified Bit-
Tornado program [8], which is a typical and widely-used
BitTorrent client. We modified both the default behavior
(through options), and the inner workings of the program.
These changes allowed us to log the pieces downloaded by
the client, as well as collect data of all the piece information
communicated to the client by other connected clients.

We have conducted a series of measurement experiments
from December 2006 to May 2007 in both the global Internet
and the PlanetLab research network testbed [9].

1) Real Internet Swarms: For these swarms, we used
multiple administrated clients to record snapshots of the piece
population in a real BitTorrent swarm. This consisted of
monitoring the number of peers contacted by our clients to
determine when most of the swarm had been contacted, at
which point the experiment was terminated. These experiments
usually take less than one hour to contact over 90% of the
peers in a swarm, which is enough to get a clear view of the
global piece population.

We also studied a swarm’s changing piece population over
time. This is useful to study how the piece population varies



TABLE I
THE TORRENTS USED IN THE EXPERIMENTS

Torrent Name Pieces Size (MB) Leechers Clientsa

KNOPPIXb 4125 4325 169 10
FreeBSDb 5699 1494 34 10
mandrivab 2803 735 89 9
openSUSEb 14805 3881 398 9
feistyc 1387 727 65-120 20
openSUSE-2c 14977 3926 100-150 18
PlanetLabc 1497 784 0-340 340
a Number of administered clients used to connect to the swarm.

All peers are administrated clients in PlanetLab experiment
b Snapshots of population taken
c Evolution of population monitored

with time, especially when the torrent swarm is in an initial
transient state. The method is the same as the snapshot, except
that the experiment is run for a much longer time.

We chose 6 torrents from well-known Linux distributions
that use BitTorrent to distribute their files, which are shown
in Table I. They are all freely available online, and also
have tracker information available. Their file sizes are quite
representative of the file sharing being done by BitTorrent.

2) Simulated PlanetLab Swarm: In the PlanetLab swarm,
all the clients are controlled and use the modified BitTornado
program, which enables us to have an even closer look at the
piece distribution and evolution. We created a sample torrent
file that resembles real ones, shown in Table I, and ran a
tracker for the purpose of the experiments. The downloading
and uploading bandwidths of the clients are set to 75 and 25
KB/s respectively, and we restricted each client’s maximum
connections to 40 to further enhance the locality effects of the
piece population. All other parameters were left at the default
values for the client.

IV. MEASUREMENT RESULTS AND ANALYSIS

We now present and analyze our measurement results for
piece populations. In order to make comparisons between
different swarms, some normalization of the data is needed.
For all data, we normalize the number of copies (x-axis) by
the total number of downloaders, so that it varies from 0
to 1. If the populations are all from the same swarm, the
population size data (y-axis) will be normalized by the number
of pieces, so it will also vary from 0 to 1. However, this
normalization does not make sense when comparing different
swarms’ populations, as it leads to a much smaller population
when the number of pieces is larger. Therefore, to facilitate
the comparison of multiple swarms, they will be normalized
so that the area under their population graph is 1.

A. Snapshots of Piece Population

Figure 1 shows the snapshots of the piece populations for
various real torrent swarms. All four appear to be normally
distributed with mean values slightly less than half the down-
loaders, indicating that they are in the transient state. The least
normally distributed populations are Knoppix and openSUSE,
which corresponds to their being the largest swarms. This

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Proportion of Downloaders

N
or

m
al

iz
ed

 P
op

ul
at

io
n 

of
 P

ie
ce

s

 

 
KNOPPIX x=169 N=4125
FreeBSD x=34 N=5699
mandriva x=89 N=2803
openSUSE x=398 N=14805

Fig. 1. The piece populations of different torrents (x = number of
downloaders, N = number of pieces).

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

220

Time (hours)

N
um

be
r 

of
 C

lie
nt

s

 

 

Peers
Seeders
Leechers

Fig. 2. The number of peers in the feisty swarm.

larger swarm size results in peers having a limited local view
of which pieces are rarest, which leads to a distortion of the
normal curve towards some pieces having extra copies (the
tail evident in figure 1). The other two populations are small
enough that a peer’s local view is nearly complete, resulting
in a near perfect normal distribution.

B. Evolution of Piece Population

To further understand the dynamics of piece population in
the different states of the swarm, we have also monitored
swarms throughout their lifetime. It is worth noting that such
experiments can be difficult to conduct for real Internet swarms
because, in general, we do not know the exact start time of a
swarm unless it is launched by ourselves. Swarms launched by
ourselves, however, are not necessarily representative and the
measurement results can be biased. Through constant online
tracking, we did find several swarms that we began monitoring
very early, and we now show two of them.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Proportion of Downloaders

N
or

m
al

iz
ed

 P
op

ul
at

io
n 

of
 P

ie
ce

s

 

 
Population (hour 1)
Population (hour 8)
Population (hour 14)
Normal Fit (hour 1)
Normal Fit (hour 8)
Normal Fit (hour 14)

Fig. 3. Selected piece populations from the feisty swarm.

0 2 4 6 8 10 12 14 16 18
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Time (hours)

M
ea

n

Fig. 4. The mean of the piece population in the Feisty swarm (error bars
are 95% confidence intervals).

1) The feisty Swarm: Figure 2 shows the evolution of the
Feisty swarm over a period of 17 hours. The monitoring began
soon after the torrent was launched, and though the number
of leechers has already peaked, a peak is clear in the number
of seeders near the middle of the experiment. This leads to
the conclusion that this swarm was in a transition from the
transient state to the steady state as the experiment progressed.
However, there was a large influx of peers near the 12 hour
mark, probably due to a news posting.

Figure 3 shows three representative plots of the piece
population in the Feisty swarm, as well as fitted normal
distributions. The piece population is seen to be progressing
towards a more normal distribution, and towards a mean closer
to 0.5. This progression of the mean can be more clearly
seen in Figure 4, though somewhat noisy. Figure 5 shows the
progression of the standard deviation towards a more narrow
distribution, although the width does increase near the end of
the experiment after the large influx of peers occurs.

0 2 4 6 8 10 12 14 16 18
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Time (hours)

S
ta

nd
ar

d 
D

ev
ia

tio
n

Fig. 5. The standard deviation of the piece population in the feisty swarm
(error bars are 95% confidence intervals).

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

Time (hours)

N
um

be
r 

of
 C

lie
nt

s

 

 
Peers
Seeders
Leechers

Fig. 6. The number of peers in the openSUSE-2 swarm.

2) The openSUSE-2 Swarm: Figure 6 shows the evolution
of the openSUSE-2 swarm over a period of 70 hours while it
was being monitored. The monitoring began very soon after
the torrent was launched, as seen by the large number of
leechers and few number of seeders. Due to the size of the
torrent, not much change is seen in the swarm during the
experiment, though the number of leechers decreases without
an increase in the number of seeders, indicating that seeders
are leaving the system at the same rate as peers are becoming
seeders while few new peers are joining the system. This
system is considered to still be in the transient state, and is in
an earlier state than the Fiesty swarm was.

Figure 7 shows three representative plots of the piece
population in the openSUSE-2 swarm, as well as fitted normal
distributions. The piece population is very clearly seen to be
progressing towards a more normally distributed shape, as the
population shown for hour 2 has a very large tail. The mean
is omitted due to its similarity to figure 4, as it is also clearly



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Proportion of Downloaders With Pieces

P
ro

po
rt

io
n 

of
 P

ie
ce

s 
w

ith
 th

at
 P

ro
po

rt
io

n 
of

 D
ow

nl
oa

de
rs

 

 
Population (hour 2)
Population (hour 29)
Population (hour 62)
Normal Fit (hour 2)
Normal Fit (hour 29)
Normal Fit (hour 62)

Fig. 7. Selected piece populations from the openSUSE-2 swarm.

0 10 20 30 40 50 60 70
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (hours)

S
ta

nd
ar

d 
D

ev
ia

tio
n

Fig. 8. The standard deviation of the piece population in the openSUSE-2
swarm (error bars are 95% confidence intervals).

seen to be progressing towards higher values. Figure 8 also
shows the clear progression of the standard deviation towards
a more narrow distribution of pieces.

C. Results of the PlanetLab Swarm

The controlled PlanetLab environment enables us to closely
investigate the piece population of a swarm in any period
throughout its lifetime. Figure 9 shows the evolution of the
PlanetLab swarm over the period of 12 hours that we simulated
it. This system is in the startup state (as seen by the single seed
that is available) through most of the experiment, transitioning
to the transient state after approximately 9 hours. The system
then moves quickly to an end state not seen in the other
real swarms, as no new clients join the system but many are
completing their download, and many are leaving the system.

Figure 10 shows three representative plots of the piece
population in the PlanetLab swarm, as well as fitted normal
distributions. The normal distribution does not match the first

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

Time (hours)

N
um

be
r 

of
 C

lie
nt

s

 

 

Peers
Seeders
Leechers

Fig. 9. The number of peers in the PlanetLab swarm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Proportion of Downloaders With Pieces

P
ro

po
rt

io
n 

of
 P

ie
ce

s 
w

ith
 th

at
 P

ro
po

rt
io

n 
of

 D
ow

nl
oa

de
rs

 

 
Population (hour 2)
Population (hour 6)
Population (hour 10)
Normal Fit (hour 2)
Normal Fit (hour 6)
Normal Fit (hour 10)

Fig. 10. Selected piece populations from the PlanetLab swarm.

two plots at all, as most pieces suffer from a low replication
rate, while peaks higher in the population show some pieces
have a much higher replication rate. This is due to the limited
upload bandwidth of the original seed, and the time it takes
for a single copy of the file to be present in the network
(approximately 9 hours). However, the third population at 10
hours shows that the swarm takes very little time to become
very narrowly distributed after the first full copy of all pieces
are present in the network.

The mean in this experiment (also not shown) progresses
linearly towards a higher value, finishing very close to 1. Fig-
ure 11 shows the rapid progression of the standard deviation
towards a very narrow distribution of pieces around the mean
value once the first copy of the file is present in the network
(at 9 hours). The wide distribution of the piece population in
the first 6 hours is expected, as the piece population goes from
an initial state of very narrow (all pieces have no copies), to a
split population, and finally to a normal distribution of narrow
size soon after all pieces enter the system.



0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
S

ta
nd

ar
d 

D
ev

ia
tio

n

Time (hours)

Fig. 11. The standard deviation of the piece population in the PlanetLab
swarm (error bars are 95% confidence intervals).

D. Summary and Further Discussion

As we have seen, the snapshots of piece populations roughly
follow normal distributions with means near half the number of
downloaders. Their widths were small, and the tails expected
for the larger swarms were small as well, indicating the
effectiveness of the rarest-first policy at replicating pieces
uniformly using only the local information available to each
peer. Note that this is the same conclusion reached by Legout
et al. [7], but in this case we did not rely on the somewhat
questionable definitions of entropy and peer availability to
reach that conclusion, as we have the global piece data needed.

The population evolution over time showed similar shapes.
In addition, as the swarm progressed out of the transient state
and into the steady state, we have seen a clear progression in
the shape of the piece population. This progression leads to
a more ideal shape, as the mean increased and the standard
deviation decreased.

In the PlanetLab measurement the population of the early
stages in a swarm’s lifetime was quite poor at matching
the ideal narrow distribution. This is attributable to the poor
availability of some pieces in the system, which have not yet
been uploaded by the initial seed. This changed very quickly
after a single copy of the file was available, indicating that the
policy works well once this startup phase is complete. Once
the last piece is available in the system, the swarm quickly
replicates the last pieces uploaded so that they can “catch up”
to the replication that earlier pieces have already had.

In summary, the rarest-first policy employed by BitTorrent is
fairly successful, both in moving quickly to a narrow distribu-
tion, and in maintaining and even improving that distribution
as the swarm progresses. There are concerns though, as both
the early startup phase and some of the larger swarms show
increased width due to the limited piece availability and the
limited knowledge of the system a peer has. The first is
not easy to improve, as any policy will be hampered by the
limited selection of pieces available in the system. However,

the tails seen on some of the larger swarms’ population
distributions could be improved upon by increasing the amount
of knowledge each peer has of the system. For example, when
communicating the pieces each peer has to its neighbors, extra
information could be included such as the rarest pieces seen
by the peer or the number of copies each piece has in it’s
limited local view. This new information, combined with the
knowledge a client already has of its neighboring pieces, is
believed to be enough to reduce the size of the tail on the
population distribution by an order of magnitude at very little
cost in extra communication.

V. CONCLUSIONS

In this paper, we have presented measurements on the
piece populations in BitTorrent swarms, and investigated the
effectiveness of the rarest-first policy for piece replication
from a piece distribution and evolutionary perspective. We
have shown that the policy is quite effective once all pieces
become available in the system, and throughout the lifetime
of the swarm. However, some deviations from the ideal were
apparent soon after creation of the swarm, and in some of the
larger swarms studied.

We are currently conducting measurements of ultra-large
swarms to determine the size that population tails can grow
to. We are also working on PlanetLab experiments consisting
of a large number of peers joining after the startup phase, and
progressing through a transient to a steady state.

With these results, we plan to modify the rarest-first policy
to determine if it is effective in reducing the size of the tail.
Furthermore, we are building piece-level models describing the
piece population of a torrent swarm, which will better explain
the pros and cons of the rarest-first policy, as well as facilitate
our modifications. Our preliminary modeling results can be
found in our technical report [10].

REFERENCES

[1] B. Cohen. (2003, May) Incentives build robustness in BitTorrent.
[Online]. Available: http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

[2] (2004) CacheLogic. [Online]. Available: http://www.cachelogic.com
[3] D. Qiu and R. Srikant, “Modeling and performance analysis of

BitTorrent-like peer-to-peer networks,” in Proc. SIGCOMM ’04, Port-
land, Oregon, USA, Aug. 30–Sep. 3, 2004.

[4] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A. Hamra, and
L. Garces-Erice, “Dissecting BitTorrent: Five months in a torrent’s
lifetime,” in Passive and Active Measurements, Antibes Juan-les-Pins,
France, Apr. 2004.

[5] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, “The
BitTorrent P2P file-sharing system: Measurements and analysis,” in
Proc. 4th International Workshop on Peer-to-Peer Systems, Ithaca, NY,
USA, Feb. 2005.

[6] G. de Veciana and X. Yang, “Fairness, incentives and performance in
peer-to-peer networks,” in Proc. Forty-first Annual Allerton Conference
on Communication, Control and Computing, Monticello, Illinois, USA,
Oct. 2003.

[7] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke
algorithms are enough,” in Proc. IMC’06, Brazil, Oct. 2006.

[8] (2007) The BitTornado website. [Online]. Available: http://www.
bittornado.com/

[9] (2007) The PlanetLab website. [Online]. Available: http://www.
planet-lab.org/

[10] C. Dale and J. Liu, “Modeling piece population in BitTorrent,” Simon
Fraser University, Tech. Rep., 2007.


